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Abstract. We clarify some of the controversial aspects involved in the treatment of the 
quantum Zeno paradox. An argument for the paradox is given on the basis ofthe uncertainty 
principle, and the conditions for the paradox are analysed. Fleming's rule is proved in a 
simple way. Connection with the standard time-dependent perturbation theory is discussed. 
We compare the Zeno paradox with the other well known paradoxes of quantum mechanics 
and point out that the quantum Zeno paradox is immune to the use of the ensemble 
interpretation which has some success in tackling the other paradoxes. Remarks are made 
concerning the broader significance of the quantum Zeno paradox. 

1. Introduction 

The quantum Zen0 paradox was first formally stated in the literature by Misra and 
Sudarshan (1977) followed by several other discussions (Chiu et a1 1977 (to be referred 
to as CSM), Peres 1980a, Singh and Whitaker 1982, Peres 1984). The paradox stems 
from the observation that the survival probability of a given quantum system (i.e. the 
probability for finding the system in the initial state after being left to itself for a certain 
period of time) tends to unity in the limit of a continuous series of observations to 
find out whether the system is in the original state or not. This result hinges on two 
factors: the presence of an initial range of time for which the survival probability falls 
off as t 2 ,  and the notion of wavefunction collapse during the observation process. 

Even though there have been extensive discussions about departure from the 
exponential nature of the survival probability for short times (Khalfin 1958, Winter 
1961, Fleming 1973, Peres 1980b and references therein), there remain areas of con- 
troversy highlighted by the recent papers due to Fleming (1978, 1983) and Chiu er a1 
(1982). 

In the present work we wish to clarify these controversial aspects as well as the 
essence of the quantum Zen0 paradox by much simpler arguments showing how deeply 
rooted it is in the quantum formalism. In particular, we show that it persists within 
the ensemble interpretation of quantum mechanics. We also discuss various facets of 
the possible significance of the quantum Zen0 paradox. 

2. Argument from the generalised uncertainty principle 

Our argument starts from the well known inequality (Gillespie 1970, p 68) 

AAAB 3 f l ( [A,  B])I. (1) 

f Permanent address: Theoretical Nuclear Physics Division, Saha Institute of Nuclear Physics, Calcutta 
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Here 

AA = {(A2) - 

is the uncertainty of the corresponding observable A for the state corresponding to 
the wavefunction of the system and AB is defined in an analogous fashion. (It is 
assumed that neither A nor E depends explicitly on time.) We may take for E the 
total Hamiltonian of the system, 2. Then, using 

([A, 21) = i h  d(A)/dt (3) 

we obtain 

A A 2  (h/2AE)ld(A)/dt/. 

We now choose, for A, the projection operator 

(4) 

where + is the initial decaying wavefunction. 
Then we have 

(A) = (A2) = P (  t )  = I ( + l  4)12 
where d ( t )  is the wavefunction at time t :  

4 ( t ) = exp ( - i %t 1 +. ( 7 )  

Then 

(AA)’=(A’)-(A)’= P(l-P)  (8) 

[P(1- P ) ] ” *  3 (h/2AE)ldP/dt / .  ( 9 )  

and, using (4), we finally arrive at 

However at t = 0, P must be equal to unity. This gives directly that (dP/d t )  must be 
equal to zero at t = 0, and hence that there is no linear term in the expansion for P (  t ) .  
This corroborates in a general way the presence of an initial range of time for which 
the survival probability falls off as t’, which leads to the quantum Zen0 paradox using 
the postulate of wavefunction collapse during the act of measurement. 

3. Conditions for the presence of a Zeno region 

From (9) ,  the condition that the quantum Zen0 effect may be observed is that A E  is 
finite. This is actually a suficient condition, but has not been shown to be a necessary 
one; we have obtained no information on the case where A E  is infinite. 

This appears to be in conflict with the result given by CSM. They state explicitly 
that it is essential for the existence of the Zen0 paradox that X is semi-bounded, and 
an additional condition that (5Y) is finite is suficient to give the proof. (Our condition, 
in comparison, is that both (2Q and (X2) must be finite or, in different terms, that the 
first and second moments should be finite. Of course the origin of %’ may be chosen 
freely, but moving the origin by a finite amount cannot affect whether or not (5Y) and 
(X’) are finite.) 
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1 jlp dP’/[P’( 1 - P’)]1’2 

We first point out that the question of semi-boundedness raised by CSM does not 
appear to be relevant. Their argument consists only of the example that the non- 
bounded Lorentzian distribution does give rise to a linear term in survival probability; 
this certainly does not show that semi-boundedness is essential. Our condition also 
gives correct results for the Lorentzian since, for this case, ( X 2 )  is infinite. 

The question of which moments need to be finite for a Zeno paradox to occur has 
recently been one of controversy. Chiu et a1 (1982) claimed that the condition is that 
all moments should be finite, but Fleming (1983) pointed out that he had already 
claimed to have shown (Fleming 1978) that only the first two moments need be finite 
(see also Danos and Johnson 1984). Our result clearly supports Fleming and is obtained 
in a particularly simple way. 

Of the discussion given by Chiu et a1 (1982), one may suggest that, while the ideas 
expressed in the first five equations of their 5 2 are well known in many branches of 
physics, and straightforward in use when all moments are finite, the implications when 
one or more moments are infinite may be more subtle. Let us consider, for example, 
the Lorentzian distribution, $ ( A ) ,  discussed in (6) of CSM. The fact that the second 
moment of $ ( A )  is infinite tells us that the second derivative of a( t )  is infinite at the 
origin, and hence there is a discontinuity of slope. Since $ ( A )  is even, the only 
possibility is that a( t )  has a non-zero slope at the origin and there is no t 2  region. Let 
us now consider, though, a function $ ( A )  with second moment finite but fourth moment 
infinite. By a similar argument, there will be a discontinuity in third derivative of a( t )  
at the origin, but this does not rule out a t2 region and hence a quantum Zeno paradox. 

S 2(AE)t/ h 

4. Proof of Fleming’s’rule 

From (9) we may easily obtain Fleming’s rule (Fleming 1973, Peres 1980b). We perform 
the integral in the inequality 

to obtain 

sin-’(2P- 1 ) s  ~ / 2 - 2 ( A E ) t / h  (11) 

P 5 cos2[(AE)t/h] (12) 

and, after a little manipulation, 

which is Fleming’s rule. 
The only limitation on this result arises from taking sines under an inequality, 

which leads to the condition (AE)t /h  S ~ / 2 .  This though merely corresponds to the 
obvious demand that Os P s  1. Fleming’s rule is significant for low values of t ;  for 
these values, a t 2  decay is slower than any decay proportional to t, but for larger values 
it is faster, and one may estimate a time of transition from the t2  region to the t region 
(Peres 1984). 

5. Use of time-dependent perturbation theory 

It is interesting to note that the usual textbook time-dependent perturbation theory 
approach to such problems (e.g. Dicke and Wittke 1960, Schiff 1955), which is usually 
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stated to give rise to a i dependence (and hence to the usual exponential type of 
decay), does, in fact, give a t’ dependence in the appropriate region. 

Rather than using the full Hamiltonian of the system, Z, as we have done so far, 
the perturbation theory approach breaks the Hamiltonian into two parts, X= Xo+ V, 
where the decaying state is an eigenstate of Zo, and Vis to be regarded as a perturbation. 
It is easy to establish a connection between the two approaches as 

(m lx l j )  = (ml Vlj) m # j  

=(mlXolj)  m = j  

where Im) is the decaying state and Ij) is any eigenstate of Xo.  
The usual formula for the probability of decay is 

where p k  is the density of states I k). It is then usually stated that the integral is small 
except for values of Ek such that - E,,,[ is small, and therefore it is permissible to 
assume that [(mi Vlk)I2 and pk are Constant. With z equal to ( E k  - Em)f /2h,  and using 
the fact that 

O(t) =2Tpkt((m1V(k)j2/h (15) 

However our initial assumption that the integral is small unless IEk -E,( is small 

dz sin’ z/z2 is equal to T, one easily obtains 

the decay, as required, being proportional to t. 

is essentially a long-time condition. For short times one obtains trivially 

clearly a f 2  dependence. Of course, the prediction is not exact, because we are working 
to first order in perturbation theory, but, assuming there are no divergences, the t 2  
dependence should be exact for infinitesimally small time. Thus, contrary to the view 
usually expressed in textbooks, one will expect a t’ region whether the final states are 
discrete or form a continuum. 

Computed calculations of (14) for particular forms of I( ml Vlk)/’pk show a gradual 
transition from t 2  dependence to f dependence. An example is given in figure 1, where 
I(m1 Vlk)(’pk has been taken as a finite set of equally spaced delta functions centred 
on Im). (Such simple systems demonstrate clearly the required trend, but also introduce 
extraneous, presumably unphysical, features, due to the discrete rather than continuous 
function used, and the periodicity also involved. Thus the results of figure 1 show 
oscillatory behaviour.) 

The framework described obviously breaks down if the integral which is the 
coefficient of t’ in (16) becomes infinite. Using (13) we note that 

and hence the integral becomes equal to ( X 2 )  - (W’. We therefore expect a quantum 
Zeno paradox only if ( X’) - (W’ is finite, in conformity with the treatment of 0 3 .  

Since completion of the present work we have become aware of an interesting 
paper by Joos (1984), who considers in some detail a problem similar to the one 
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Figure 1. Form of dependence on t for the function given in (14). We take the particular 
case where s, given by l(mlVlk)l*p,, is a series of 20000 delta functions equally spaced 
and centred on E,. The required exponent, n, may then be obtained from the ratio of the 
increments in the logarithms of s and f between successive closely spaced values of 1. The 
results show clearly that n tends to 2 for infinitesimally small f, and to 1 for large values 
of t. (The oscillations are a result of the rather unphysical periodicity in s and are irrelevant.) 

discussed here, but from a different point of view. He discusses the measurement 
process both using wavepacket reduction, and taking into account the measuring 
apparatus. He attempts to distinguish between circumstances which will cause a 
quantum Zen0 effect (which he terms the ‘watchdog effect’) and those for which the 
behaviour may be represented by a master equation with suppression of interference 
terms and constant transition rates. 

6. Zen0 and other paradoxes in various interpretations of quantum mechanics 

The Zeno paradox stands apart in a number of ways from the other well known 
paradoxes of quantum theory and interpretation such as Einstein-Podolsky-Rosen 
(EPR) and Schrodinger’s cat. (Here, as elsewhere in the paper, we use the word 
‘paradox’ non-controversially to describe an experiment with results or interpretation 
considered to be surprising.) 

In the first place, the EPR and Schrodinger paradoxes are paradoxes of interpretation. 
The Zen0 paradox, on the other hand, is a paradox of prediction; it is the predicted 
behaviour that is difficult to accept. In principle the Zeno paradox may be tested; 
either the decay is inhibited or not. Equally, if different interpretations of quantum 
mechanics gave different predictions as to the occurrence or otherwise of the Zeno 
paradox, the choice of interpretations would be open to experimental test. (In contrast, 
when one applies different interpretations to, for example, the EPR paradox, one is 
only asking whether they can explain the accepted facts without unduly stretching 
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one’s credulity. Of course there are extensions of the EPR example of the Bell type, 
where the results may genuinely be open to question and experimental test.) 

All the paradoxes result from collapse of wavefunction at an observation but the 
Zeno paradox is connected with a different aspect of the problem from the other 
paradoxes. To clarify, we set out the basic facts of wavefunction collape. Suppose 
a measurement is made of an observable 0 with associated operator 0, and which 
has eigenvalues and eigenfunctions 0, and a,. If the wavefunction before the 
measurement is given by X,, c,,a,, the probability of obtaining the value 0, is c$c, ; 
if the value 0, is obtained, the von Neumann theory of measurement says that the 
wavefunction immediately after the observation is e,. 

Paradoxes such as EPR and Schrodinger’s cat exploit the collapse from a linear 
combination of eigenfunctions to a single one in a variety of ways. In the quantum 
Zeno paradox, the collapse of wavefunction has two distinct roles to play. First, rather 
trivially, the collapsed wavefunction tells us whether the system has decayed or not. 
The more important role is that the part of the wavefunction corresponding to the 
survival of the system is separated from the part corresponding to the decayed system. 
As Peres (1980a) clearly shows, it is the presence of the latter that gives rise to the 
further decay of the system. The crucial point responsible for the Zeno paradox, then, 
is not the change from a linear combinatiun of eigenfunctions to a single one, but the 
change from pure state to mixed state due to the observation. 

In an ensemble interpretation, the fact that a particular result is obtained in a 
measurement (survival or decay) is of considerably reduced importance in the develop- 
ment of the wavefunction. However, the fact that any result is obtained is sufficient 
that the state of the system becomes mixed. After each measurement in a Zeno sequence, 
one must work with a new sub-ensemble corresponding to non-decayed systems only. 
Thus the part of the wavefunction for this sub-ensemble is ‘cut off from’ that for the 
sub-ensemble of decayed systems. (The linear combination of the two parts is broken.) 
Again, this change reduces, or in the extreme case, eliminates, the possibility of decay 
and this is the quantum Zeno paradox. 

Let us discuss this in density-matrix language, the natural language to use for the 
ensemble interpretation. We may use 2 x 2 matrices, the first state being for surviving 
systems, the second for decayed systems. (In other contexts we would need to regard 
the latter as a continuum of separate states, but here that is not necessary.) The density 
matrix may be written as 

(;:: ;3 
At t = 0, naturally pss is unity, and other elements zero. At the time of the first 
measurement, pss has decreased from unity, p d d  has increased to 1 -pss  and the 
off-diagonal elements have become non-zero, so that the matrix is idempotent. During 
the measurement, the off -diagonal elements become zero, the diagonal elements do 
not change and the state becomes mixed as the density matrix is non-idempotent. 
Subsequently we need to consider only the matrix corresponding to the sub-ensemble 
for the surviving systems, so its form reverts to that at 1 = 0, but corresponds, of course, 
to a smaller number of systems, the number surviving the first decay period. The 
procedure may be taken through each decay period and measurement. After each 
measurement the ensemble refers to a smaller number of systems. The slowing down 
of the decay is caused because, at each measurement, the off-diagonal terms are stripped 
off. Since the rate of growth of p d d  is proportional to the magnitude of these off-diagonal 
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terms, and the rate of growth of these elements is proportional in magnitude to pss, 
the t2  dependence of pdd after each measurement is clear. It is this that leads to the 
paradox. 

(The fact that the quantum Zen0 paradox persists within an ensemble interpretation 
appears to make it more acute a problem than EPR and Schrodinger paradoxes, which 
are usually claimed (e.g. Ballentine 1970) not to exist within the ensemble interpretation. 
This is because only the diagonal elements are important in the study of such paradoxes, 
and the washing-out of the off-diagonal elements due to measurement is not significant.) 

7. Significance of the quantum Zeno paradox 

Should the quantum Zeno paradox be regarded as a genuine problem, or merely an 
abstract metaphysical curiosity? For many important types of decay, and with a certain 
outlook to what constitutes a measurement, it has been claimed to be unimportant. 
This approach assumes the measurement to be a physical process lasting a certain 
period of time, which may be, in general, the apparatus response time. This time is 
usually considered to be longer than the Zen0 time (defined as the time for which the 
t 2  dependence of the survival probability is predicted) for most atomic and nuclear 
decays (Peres 1984). 

Even with this approach, one still needs to pay particular attention to the possibility 
that the Zen0 paradox may affect the proton decay conjectured by grand unified 
theories. The proton lifetime estimate based on the grand unified theories is about 
103’yr (Georgi and Glashow 1974, Georgi et a1 1974, Langacker 1981), but the 
experimental lower limit is larger by about two orders of magnitude (Bionta et a1 
1983). Two different explanations have been suggested, both using the concept of 
Zeno time. The one by Khalfin (1982) considers the Zeno time to be greater than the 
age of the universe, taken to be about 10“yr. The other one, suggested by Fleming 
(1983), argues that the Zen0 interval for proton decay is longer than the experimental 
time resolution for observing the proton decay. However, the latter contention contra- 
dicts the argument by Chiu et a1 (1982) who claim to demonstrate the implausibility 
of the Zeno time for proton decay being as large as the pertinent time resolution for 
the experiment of about lO-”s. Since the theoretical basis for estimating the Zeno 
time is rather dubious, it is difficult to assess properly this range of ideas. 

The importance of the quantum Zeno paradox is accentuated if one adheres to the 
concept of measurement closer to that of Dirac or von Neumann, the idea that an 
observation is accompanied by an instantaneous collapse of wavefunction, irreducible 
to the evolution of wavefunction via the Schrodinger equation. If the measurement 
process is instantaneous, one is led inevitably to the quantum Zen0 paradox whatever 
the Zeno time. 

We believe that the quantum Zen0 paradox is an instructive problem to probe the 
foundations of quantum mechanics, particularly since it appears relatively immune to 
the type of interpretation of quantum mechanics one adopts. 

Empirical realisability of the Zeno paradox calls for comprehensive investigation. 
Perhaps at this stage one needs to envisage a concrete form of gedanken experiment, 
similar to the type formulated by Bohm for the EPR paradox. 

Finally we would like to emphasise an unexplored question: does the quantum 
Zen0 paradox persist in the macroscopic limit? It is transparent that the quantum 
Zen0 paradox is a direct consequence of the quantum formalism using the definition 
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of survival probability based on the collapse of wavefunction. However it is not clear 
how the quantum Zen0 paradox can disappear, as one would expect, in the macroscopic 
limit, where the concept of continuous measurement involving instantaneous observa- 
tions is surely an operationally viable notion. The ‘disturbance’ idea of the Copenhagen 
interpretation associated with the collapse of wavefunction seems to be rather vague 
for clarifying this issue. It would be interesting to explore whether approaches which 
claim to furnish ‘realist’ descriptions of quantum mechanics can provide insight into 
this problem (Bohm and Hiley 1985, Conrad et a1 1985). 
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